您现在的位置是:心海E站 > 句子大全 > >正文
105句笛卡尔与坐标系的故事简短精选好句
发布时间:2023-11-27 08:55:36 admin 阅读:59
坐标与笛卡尔的故事
1、笛卡尔和坐标系的故事
(1)、他的设想:只要把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特性的点组成的。比如,我们把圆看成是一个动点对定点O作等距离运动的轨迹,也就可以把圆看作是由无数到定点O的距离相等的点组成的。我们把点看作是留成图形的基本元素,把数看成是组成方程的基本元素,只要把点和数挂上钩,也就可以把几何和代数挂上钩。
(2)、公主的数学在笛卡尔的悉心指导下突飞猛进,他们之间也开始变得亲密起来。笛卡尔向她介绍了他研究的新领域——直角坐标系。
(3)、1637年,笛卡尔发表了《几何学》,创立了平面直角坐标系。他用平面上的一点到两条固定直线的距离来确定点的位置,用坐标来描述空间上的点.进而创立了解析几何学,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来实现发现几何性质,证明几何性质。
(4)、1650年,斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。
(5)、虽然笛卡尔因那个以他命名的坐标系而闻名,但是没有资料说他对极坐标有什么研究。真要写成他比较熟悉的方式应该是这样的:
(6)、二维的直角坐标系是由两条相互垂直、0点重合的数轴构成的。在平面内,任何一点的坐标是根据数轴上对应的点的坐标设定的。在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。采用直角坐标,几何形状可以用代数公式明确的表达出来。几何形状的每一个点的直角坐标必须遵守这代数公式。
(7)、另外在此八卦一下克里斯汀女王,她是古斯塔夫国王三个女儿中唯一没有夭折的,所以很得宠爱。
(8)、对于天体间引力的运行方式,笛卡儿选择了第一个,那就必须为引力寻找一个传递介质,笛卡儿想到了以太。
(9)、受到蜘蛛结网的启发,笛卡尔发现,可以把蜘蛛看作一个点,而它在空间中运动的每一个位置都可以通过一组确定的数字来表达。笛卡尔把墙角看作一个点,并把它称为“原点”,而从墙角延伸出的三条线——两条水平方向的线,一条垂直方向的线——就像三条两两垂直的数轴。
(10)、当时,欧洲大陆正在流行黑死病。身体孱弱的笛卡尔回到法国后不久,便染上重病。在生命进入倒计时的那段日子,他日夜思念的还是街头偶遇的那张温暖的笑脸。
(11)、 突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会功夫,蜘蛛又顺着丝爬上去。蜘蛛的“表演”使笛卡尔的思路豁然开朗。蜘蛛在屋子里可以上、下、左、右、前、后运动,能不能把蜘蛛的每个位置用一组数确定下来呢?
(12)、 对于平面也一样,我们把表示平面上一点的一组数,称作有序数对,记作(a,b)。我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴(或横轴),习惯上取向右为正方向;竖直的数轴称为y轴(或纵轴),取向上为正方向;两坐标轴的交点为平面直角坐标系的原点O。
(13)、他每天坚持给她写信,盼望着她的回音。然而,这些信都被国王拦截下来,公主一直没有收到他的任何消息。
(14)、根据工作性质选择适合的方式进行绘图即可,两者并不存在相对的好与坏。
(15)、要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩,他苦苦思索,拼命琢磨,通过什么样的方法,才能把“点”和“数”联系起来。
(16)、从古埃及开始,东方智慧与西方智慧在战争后的一次次融合让人类在代数和几何上都取得了很大的成功,但在笛卡儿之前,它们仍是两门相对比较独立的学科。几何直观形象,代数精确抽象。笛卡儿反复思考着一个问题,能否把几何图形和代数结合起来,让代数中的每个数在几何上都有意义,同时也让几何中的形与代数中的数一一对应。为此,他废寝忘食,甚至生病时都不忘思考。
(17)、笛卡儿倡导理性,“怀疑一切”便建立理性的出发点上。他认为怀疑应具有普遍性,比如在课堂上我们可以怀疑老师所说的,读书时可以怀疑书本上所写的,我们甚至可以怀疑眼前正在发生的一切,因为那很可能是一场梦。什么东西不能怀疑呢?思考,唯有思考,因为怀疑本身就思维活动的一种,当怀疑“我在怀疑”时,就进入了严重的死循环之中。道理大约等同于:
(18)、根据上面的记述,1650年的时候克里斯汀公主已经在王位上坐了18年了,事实上克里斯汀生于1626年,1632年她老爹阵亡的时候以假定继承人的身份继承了王位。
(19)、在直角坐标系中有点AB(0),试在坐标系中找一个点C,使得以点O、A、B、C为顶点的四边形为平行四边形。
(20)、满心疑惑的笛卡尔跟随前来通知的侍卫一起来到皇宫,在会客厅等候的时候,他听到了从远处传来的银铃般的笑声。转过身,他看到了前儿天在街头偶遇的女孩子。慌忙中,他赶紧低头行礼。
2、笛卡尔与坐标系的故事简短
(1)、例题一:若直线AB∥x轴,A(2,1)且线段AB=则点的坐标是______。
(2)、笛卡儿的哲学思想具有划时代的意义,一方面摆脱了经院哲学的盲目教条主义,转而推崇理性;另一方面开启了哲学的新思潮,为后来的哲学奠定了良好的基础,所以后人称他为“近代哲学之父”。故事最后的真相这位伟大的人物终于敌不过羸弱的身体,于54岁时去世。他暮年那段“忘年恋”的真相是这样的:1649年冬天,笛卡儿旅游到北欧的瑞典,瑞典年轻的女王(不是公主)很喜欢他的课(哲学课,非数学课),而且上课时间必须是从早上5点就开始。在正常情况下,这个时间笛卡儿正躺在床上思考问题,为此笛卡儿不得不改变自己的生活习惯以迎合女王。第二年,他因严寒感染肺炎去世。
(3)、其人对事实的认知可能是错误的甚至虚构的,而且我们永远无法确定其真相。
(4)、 x^2+y^2+a*x=a*sqrt(x^2+y^2)和x^2+y^2-a*x=a*sqrt(x^2+y^2)
(5)、在笛卡尔之前,几何与代数是数学中两个不同的研究领域.笛卡尔站在方法论的自然哲学的高度,认为希腊人的几何学过于依赖于图形,束缚了人的想象力.对于当时流行的代数学,他觉得它完全从属于法则和公式,不能成为一门改进智力的科学.因此他提出必须把几何与代数的优点结合起来,建立一种“真正的数学”。
(6)、当然在形而上学——哲学方面,老笛也有特殊的贡献。
(7)、笛卡尔回法国后不久便染上重病,他日日给公主写信,因被国王拦截,克里斯汀一直没收到笛卡尔的信。笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:r=a(1-sinθ)。国王看不懂,觉得他们俩之间并不是总是说情话的,将全城的数学家召集到皇宫,但没有一个人能解开,他不忍心看着心爱的女儿整日闷闷不乐,就把这封信交给一直闷闷不乐的克里斯汀。
(8)、那么笛卡尔与女王之间是不是真有什么不可告人的秘密呢?
(9)、利用两组对边分别平行的四边形是平行四边形我们可以画出符合条件的点有三个。
(10)、尽管如此,但故事本身在传达这样一个信息:数学也可以是很浪漫的。唉,我们对这个比较感兴趣。
(11)、可见当初笛卡尔的坐标系并不完善,经过后人不断地改善,才形成了今天的直角坐标系。然而,笛卡尔迈出的最初一步具有决定意义,所以人们仍把后来使用的直角坐标系称为笛卡尔直角坐标系。
(12)、由于这个问题的困扰,使得他不断地苦思冥想。终于有一天,笛卡尔大叫一声:“我思故我在”,于是就有了我们这篇文章的标题,一切都开始变得明朗起来了。。。
(13)、在历史上,笛卡尔和克里斯蒂娜的确有过交情。但笛卡尔是1649年10月4日应克里斯蒂娜邀请才来到瑞典,而当时克里斯蒂娜已成为了瑞典女王。
(14)、那时,落魄、一文不名的笛卡尔过着乞讨的生活,全部的财产只有身上穿的破破烂烂的衣服和随身所带的几本数学书籍。
(15)、 美妙数学天天见,每天进步一点点。亲爱的小朋友,今天的话题我们就讲到这里,咱们明天再见!
(16)、据说这封情书至今仍保存在笛卡尔纪念馆里……
(17)、所围面积为3/2*PI*a^形成的弧长为8a
(18)、笛卡尔回到法国,当时正赶上流行黑死病,笛卡尔不幸染上了重病。在他生命的后期,他日夜思念邂逅偶遇的那张美丽的笑脸,笛卡尔每天都给格里斯汀写信,期盼着她的回音。
(19)、求点的坐标就是求对应的横、竖线段的长,然后考虑象限确定符号。
(20)、这个就是高中的两点间距离公式,按照要求初中不需要掌握,所以我建议学生理解根本,其实就是勾股定理。我们做题的时候要给出这个直角三角形勾股定理来求解。
3、笛卡尔与坐标系的故事视频
(1)、然而,没过多久,他们的恋情传到了国王的耳朵里。国王大怒,下令马上将笛卡尔处死。在克里斯汀的苦苦哀求下,国王将他放逐回国,公主被软禁在宫中。
(2)、笛卡儿认为宇宙中弥漫着以太,太阳把以太扭曲得像个漩涡,地球就处在旋涡中的一个点上,就像搅动水桶里的水形成一个旋涡,而水上漂着的物体就会跟着旋涡转动起来。只是有个问题,如果笛卡儿的理论是正确的,那么天体的运行将不符合开普勒的第二定律和第三定律。不过在笛卡儿所处的时代,应该还没有人意识到这一点。“我思故我在”相对于数学和物理学,笛卡儿的哲学思想则更为重要,体现在他为人们提供了一种“授人以鱼不如授人以渔”的方法上。他在他的名著《谈谈方法》中建立了4条规则,我们以伽利略的小球实验试浅析之。
(3)、有一天,笛卡尔(1596—16法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如也可以用空间中的一个点P来表示它们。同样,用一组数(a,b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。无论这个传说的可靠性如何,有一点是可以肯定的,就是笛卡尔是个勤于思考的人。这个有趣的传说,就象瓦特看到蒸汽冲起开水壶盖发明了蒸汽机一样,说明笛卡尔在创建直角坐标系的过程中,很可能是受到周围一些事物的启发,触发了灵感。
(4)、说了半天也不知道把笛卡尔的哲学思想说清楚了没有,越写越发现这个话题实在太大。如果你对生命,死亡,爱恋,快乐和孤独都有疑问或者好奇的人,建议去阅读一些介绍哲学的书籍,这玩意儿得靠自己去体会,最好是赖床时去琢磨。
(5)、 在一个平面直角坐标系里,一个三角形的三个点分别在A(-1),B(-3)和C(4)上,你能求出三角形ABC的面积吗?
(6)、生活中处处有数学,同学们只要有一双善于发现的眼睛,勤于思考的大脑。我们中也可能出现伟大的数学家哦!
(7)、以太并不是一个新的概念,也并不是由笛卡儿凭空杜撰的,早在古希腊时代就有。以太在古希腊语中大意指的是青天或者上层的空气。亚里士多德认为构成物质的元素除了水、火、土、气之外,还有一种叫以太的元素。亚里士多德等古希腊的先哲们不仅认为神是存在的,而且认为神也会像人类一样需要呼吸,而神呼吸的“空气”就叫以太。以太弥漫在整个太空中,所以亚里士多德认为“自然厌恶真空”。因为与神相关,所以,以太从一开始就具有一层神秘的色彩;可能是神学界也无须向人们展示神仙的“真人秀”,所以,以太并没有太多研究的必要性和市场。以太一直被尘封在魔盒里,直到笛卡儿把它打开。
(8)、每天顶着凛冽寒风到炉火熊熊的宫殿里上课,上完课再顶着凛冽寒风回家的笛卡尔很快感冒了,这感冒又发展成了肺病。
(9)、判断:笛卡尔的死因是因为跟公主的师生恋,被国王处死。
(10)、同样地,她喜欢与有学识的女性交往,不管她们长得怎样。克里斯蒂娜年轻时十分热爱她的内侍艾芭·斯芭尔,大部分空余时间都和她在一起和称赞她的美。
(11)、笛卡尔天生体质虚弱,这点使得笛卡尔的童年生活和其他小朋友有所不同。其一是他把别人游戏玩耍的时间都用在思考上了,套用一句俗语来说就是别人长个儿的时候,他都长心眼儿了。其二就是因为他的体质,家人并没有强迫他学习,而是让他顺其自然的成长,这种教育方法最大限度的引起了他对科学和哲学的兴趣。他父亲称他为“小哲学家”,因为他一直不断地问问题。
(12)、法国人用他的名字创造了一个形容词:“笛卡尔式的”。用来形容一个人思维的理性,有条理。
(13)、水平方向:ρ=a(1-cosθ)或ρ=a(1+cosθ)(a>0)。
(14)、(数学故事)少年,考考你!用直尺和圆规画出正十七边形!
(15)、①笛卡尔坐标 (x,y,z),x坐标表示水平方向的位置,y坐标表示垂直方向的位置。二维图中任意点的坐标均可用(x,y)形式定位。②极坐标:距离
(16)、他想用一个方法表示平面上的一个点。但是笛卡儿无论怎么尝试,都无法用一个数来确定点的位置!有一次他生病了,躺在床上,看到墙角有蜘蛛在织网,蜘蛛网上有很多的交点,这些点是横着和竖着的蜘蛛丝相交而成的。
(17)、然而,没过多久,他们的恋情传到了国王的耳朵里。国王大怒,下令马上将笛卡尔处死。在克里斯汀的苦苦哀求下,国王将他放逐回国,公主被软禁在宫中。
(18)、心形线的平面直角坐标系方程表达式分别为x^2+y^2+a*x=a*sqrt(x^2+y^2)和x^2+y^2-a*x=a*sqrt(x^2+y^2)。
(19)、她蹲下身,拿过笛卡尔的数学书和草稿纸,和他交谈起来。言谈中,他发现,这个小女孩思维敏捷,对数学有着浓厚的兴趣。
(20)、笛卡尔的拉丁文原句是这样的:Dubitoergocogito,cogitoergosum,sumergoDeusest.(因为我怀疑,所以我思考;因为我思考,所以我是存在本体;因为我是存在本体,所以上帝存在。)
4、坐标是笛卡尔发明的吗
(1)、国王去世后,克里斯汀继承王位,登基后,她便立刻派人去法国寻找心上人的下落,收到的却是笛卡尔去世的消息,留下了一个永远的遗憾……
(2)、如图,在直角坐标系中,AD=OD=OB,平行四边形ABCD的面积为求其4个顶点的坐标。
(3)、二维的直角坐标系通常由两个互相垂直的坐标轴设定,通常分别称为x-轴和y-轴;两个坐标轴的相交点,称为原点,通常标记为O,既有“零”的意思,又是英语“Origin”的首字母。每一个轴都指向一个特定的方向。这两个不同线的坐标轴,决定了一个平面,称为xy-平面,又称为笛卡尔平面。通常两个坐标轴只要互相垂直,其指向何方对于分析问题是没有影响的,但习惯性地(见右图),x-轴被水平摆放,称为横轴,通常指向右方;y-轴被竖直摆放而称为纵轴,通常指向上方。
(4)、在平面直角坐标系中,一只蚂蚁从原点出发,按照向上,向右,向下,向右的方向依次不断移动,每次只移动一个单位,其行走路线如图所示:求A101 的坐标。
(5)、拿到信后,格里斯汀欣喜若狂,立即明白了笛卡尔的意图。她找来纸和笔,把方程图形画了出来,感动的泪水也随之不停地涌了出来。
(6)、这就是数学史上著名的“心形线”。故事中的公主叫克里斯汀,老人叫勒内·笛卡儿(1596—1650),这个坐标系叫“笛卡儿坐标系”。只是这个故事是后人编的,就像人们宁愿相信伽利略真的爬上了比萨斜塔一样,故事永远都比现实生动。最初的笛卡尔坐标系笛卡儿出生于法国,比伽利略小32岁。他是一位伟大的哲学家、数学家、物理学家,但是这人有一点不好——身体不好,这大概是从娘胎就带来的。在他一岁的时候,他的母亲因为肺结核散手人寰,他也差点在某次生病时夭折。好在有父亲的悉心照料,他才顽强地活了下来,随后取名勒内(意为“重生”)。他的父亲后来再婚,他便由外婆带大。笛卡儿的身体一向虚弱,所以上学后老师允许他在床上多躺一会儿,但他并没有真的休息,他的脑海里总是翻腾着奇思怪想。这些想法能把老师甚至父亲惹毛,可能他的父亲因此不怎么喜欢他。父子之间的隔阂让笛卡儿备感孤独,而孤独是独自旅行的最好理由,成年后的笛卡儿总喜欢周游各国。
(7)、坐标的思想是法国数学家、哲学家笛卡尔所创立的。
(8)、相交于原点的两条数轴,构成了平面仿射坐标系。如两条数轴上的度量单位相等,则称此仿射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。
(9)、数学第一次引进变数:把图形看成点的运动轨迹,这个想法很重要!它从指导思想上,改变了传统的几何方法,笛卡尔根据自己的这个想法,在《几何学》中,最早为运动着的点建立坐标,开创了几何和代数挂钩的解析几何。在解析几何中,动点的坐标就成了变数,这是数学第一次引进变数。
(10)、通过上面各种类型的例题,我们可以发现解决直角坐标系中题目的方式方法。首先直角坐标系中就只有一类问题,那就是坐标和线段长之间的互相转化;解题的方法就是利用几何知识(对称、全等)将横着和竖着的线段进行转化;做题时要注意必要的讨论;最后我们要清楚无论坐标系怎样变换,线段的长是不变的,因为图形的形状和大小是固定的。
(11)、一位已逾知天命之年的老人在路边邂逅了一位18岁的公主,他因为才华横溢而被公主的父亲选中当公主的数学老师。日日耳鬓厮磨,公主和老人产生了不伦之恋。国王知道后,一气之下将老人放逐,并禁止他们之间的任何交流。流离失所的老人身染沉疴,寄去的十二封书信如石沉大海,杳无回音。当写第十三封信时,他气绝身亡了,信中只有一个简单的数学公式:r=a(1-sinθ)。国王看不懂,遂将全国的数学家请来,但无人能解开谜团,于是国王很放心,将这封信交给了闷闷不乐的公主。公主收到信后立刻明白了恋人的意思。她用老人教给她的“坐标系”将这个方程画了出来(见图8-1)。
(12)、定义了直角坐标系之后就将平面分成了四个部分,这就是四个象限:第一象限、第二象限、第三象限、第四象限。(注意:平面直角坐标系将平面分成四个象限,但是四个象限并不能组成一个完整的平面!)
(13)、一个宁静的午后,笛卡尔照例坐在街头,沐浴在阳光中研究数学问题。他如此沉溺于数学世界,身边过往的人群,喧闹的车马队伍。都无法对他造成干扰。
(14)、通过之前几何中对于中点的处理方式,我们可以利用中点构造全等来处理,如下图所示,我们可以构造△APM≌△BPN就可以解决。
(15)、(数学故事)数学文化|《九章算术》第2讲《九章算术》与《几何原本》大PK
(16)、1671年牛顿第一个将极坐标系应用于表示平面上的任何一点。直到1691年来自那个大牛家族的雅各布·伯努利才真正系统地研究了极坐标系。
(17)、到了斯德哥尔摩笛卡尔才发现在这个地方特么的每天早上5点就要起床教哲学,而他从小就养成了11点钟才起床的习惯。
(18)、如图所示,在直角坐标系中,线段AB的端点A(-4)、B在平面内将线段AB沿x轴折叠,求折叠后点A’、B’的坐标。
(19)、 心形线的平面直角坐标系方程表达式分别为:
(20)、不能说笛卡尔的身世是非常幸运的,因为和帕斯卡一样他也经历了人生四大悲苦之一。在他婴儿时生母就患肺结核去世,而他也受到传染,造成体弱多病。
5、笛卡尔的坐标系的启发
(1)、在历史上,笛卡尔和克里斯蒂娜的确有过交情。但笛卡尔是1649年10月4日应克里斯蒂娜邀请才来到瑞典,而当时克里斯蒂娜已成为了瑞典女王。笛卡尔与克里斯蒂娜谈论的主要是哲学问题而不是数学。有资料记载,由于克里斯蒂娜女王时间安排很紧,笛卡尔只能在早晨五点与她探讨哲学。笛卡尔真正的死因是因天气寒冷加上过度操劳患上肺炎导致的。
(2)、她知道恋人依旧爱着她,只是不知道他们已经阴阳相隔了。
(3)、克里斯蒂娜把她介绍给英格兰大使怀特洛克,保证她的才智与美貌都是惊为天人的。她离开瑞典后也继续写信给斯芭尔,信中说她会永远爱着她。
(4)、纵使大臣经常催促她履行诞下继承人的职责,但克里斯蒂娜坚决不肯结婚。她认为婚姻“好得不能与爱情共存”。
(5)、不要以为一人将自己所有知识置于怀疑之中是件轻而易举的事情。中国的古人一直通过自我意识来省察自己言行的过程,其目的正如朱熹所说:“日省其身,有则改之,无则加勉”。孔子的学生曾子经常做到“吾日三省吾身”,即检查自己“为人谋而不忠乎?与朋友交而不信乎?传不习乎?”这些都是质疑自己的修行,要求做到知行统但从不怀疑那些“天经地义的”圣贤所创的理论体系。
(6)、然而,这些信件都被国王拦截了,公主一直没有收到笛卡尔的任何消息。当第十三封信寄出以后,笛卡尔就永久地离开了这个世界。此时,公主格里斯汀仍在宫中思念着远方的情人。
(7)、当时的人认为,克里斯蒂娜坐下、走路、移动、交谈的举动都很像男性。她也较喜欢与男子作伴,除非该女人十分漂亮,才会结识她。
(8)、转发推文到朋友圈,并配上文字”星火创新班课前热身打卡坚持第三天!”
(9)、突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。
(10)、他曾经说过:这年头什么也靠不住,只有自己靠自己,简称:我。。。靠!
(11)、一个小孩在完全自由的情况下会去做什么事呢,一定是喜欢的事。很显然,笛卡尔在思考的过程中找到了乐趣,之后他所提出的哲学命题也印证了思考对于他的重要性。相比起他在物理学、数学、哲学上的种种成就,他的家人和学校在引导他的兴趣、培养他的思维习惯上做出了更出色的作为。
(12)、如图所示,利用上述线段长的求法,设点B(x,1),
(13)、在此引入贯穿本书的两个词语:Duang和Sou~。这两个象声词
(14)、亲爱的小朋友,你好!我是朱乐平数学名师工作站的肖雪霞老师。
(15)、好了,下面给同学们几个问题,大家能不能根据以上的内容进行解答呢?
(16)、仿射坐标系和笛卡尔坐标系平面向空间的推广
(17)、了解了中点坐标的公式,其实我们也可以通过中点公式来求解平行四边形的第四个点坐标,有兴趣的同学可以试一下。
(18)、相反,笛卡儿提倡的是“普遍怀疑”:“但凡我没有明确地认识到的东西,我绝不把它当成真的来接受”。借此寻求可靠的知识基础并通过它们推理演绎出一切的知识,所以称为第一哲学,是个起点。
(19)、“有了”他忍不住叫了起来,“用两个数不就可以将点的位置确定下来了嘛!”于是,经过思考,笛卡儿最终发明了数对!为了更直观地表示,笛卡儿还吧蜘蛛网化简成网格,也就是我们学习的平面坐标系了。他本人也受到了人们永远的尊敬。
(20)、笛卡尔的主要贡献在数学方面,引入坐标系把代数几何化是最大功绩。
(1)、由于点P处有∠EPE’=90°,我们除了可以在这儿构造手拉手,也可以构造一线三
(2)、根据笛卡儿坐标系,我们很容易解释一些物理现象。比如蜘蛛是运动的,当蜘蛛网上落了一只苍蝇时,蜘蛛会从中心A点跑到苍蝇所在的B点,饕餮一餐后回到中心A点上。尽管都是在AB之间活动,但是意义不同,这该如何在坐标系上表达呢?很简单,画个带个箭头的线段就行了,线段的长度表示大小,箭头表示方向,所以称之为“向量”。箭者,矢也,故而又称之为“矢量”。根据伽利略的运动相对性原理,速度自然有大小有方向,故而速度也是矢量。物理学中的速度和日常生活中的速度不是一个概念,后者在物理学中通常称为“速率”。笛卡尔眼中的物体运动从古希腊开始,人类就认为物体运动有两种最基本的方式,其中一种是直线运动,另外一种是完美的圆周运动。这两种方式都被伽利略很好地继承了下来。笛卡儿曾研究过物体的圆周运动,比如拿一根绳子拴住一个小球沿圆周甩动起来,小球就会绕圆心不停地做圆周运动,但在松开绳子的那一瞬间,小球就会沿着圆周的切线方向飞走,也就是说以即时速度做直线运动去了。
(3)、相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。
(4)、这种现象并不奇怪,小球做圆周运动是因为它受到了绳子的牵引,绳子提供了向心力;松手后,小球飞走是因为绳子无法提供向心力。按照伽利略的惯性理论,小球自然会做匀速直线运动。只是有一点很奇怪,既然圆周运动需要向心力,那就不存在所谓的圆惯性。所以笛卡儿认为,在物体不受力的情况下,只有静止或者匀速直线运动这一种运动方式,所以匀速圆周运动并非是完美的,更不是匀速直线运动的归宿。
(5)、(数学故事)数学文化|《九章算术》第4讲名家解读(下)