您现在的位置是:心海E站 > 句子大全 > >正文

90句罗素悖论阻碍了集合论和整个数学精选好句

发布时间:2024-02-01 13:52:37 admin 阅读:59

导读罗素悖论 1、罗素悖论的通俗版又被称为 (1)、除了ZFC公理系统,冯·诺伊曼(vonNeumann)、博内斯(Bernays)和哥德尔(Gödel)提出的NBG公理系统也能解决罗素悖论。 (2)、有一本书叫《创新者的窘...

罗素悖论

1、罗素悖论的通俗版又被称为

(1)、除了ZFC公理系统,冯·诺伊曼(vonNeumann)、博内斯(Bernays)和哥德尔(Gödel)提出的NBG公理系统也能解决罗素悖论。

(2)、有一本书叫《创新者的窘境》,提出了一个让大企业困惑的悖论,全书就是在阐述这个悖论和试图回答这个悖论:大公司之所以被颠覆不是因为他们管理不善,而是因为他们管理的太优秀了!那我们到底该不该管理优秀?该不该管理卓越?要不要追求管理卓越?这个悖论对一些企业的冲击很大,以至于华为多次内部各种讨论的时候,主题自然的都是聚焦在颠覆式创新的问题上来了。以至于华为人都在讨论该如何应对颠覆性创新,相反,人力资本管理问题倒显得地位次要了。最后还是任总站出来稳定军心。任总写了篇文章,认为宝马是不会被颠覆,他在文章中称,“大多数人认为,特斯拉汽车是颠覆性创新的代表,未来肯定会超越宝马。但我认为,只要宝马采取开放性的改革提升自身,也不一定会输。”这个世界上充满悖论,管理中也充满悖论。悖论本来是一个哲学上一个持续关注的问题,昨天就在想这个事儿,像罗素悖论:“理发师的头谁来理?”如果理发师的头自己来理,这个悖论前提就被推翻了。如果理发师不给自己理,不给自己理发,他的头应该是谁来理?哲学上类似的悖论还有很多,“万能的上帝能不能创造一块他自己举不起来的石头?”,“神能造出方形的圆形吗?”,“神能把对的看成错的吗?”,“神能找到一件他做不到的事吗?”……有一次,柏拉图把自己假装成守桥人,让苏格拉底回答一个问题,说你要是回答正确我就让你过桥,回答不正确我就把你扔到水里面去。苏格拉底回答:你把我扔到水里面去。悖论就出来了:如果判定苏格拉底说对了,就应该让他过去;如果判定苏格拉底回答错误而将其扔进到水里,那回答又是正确的。这些在哲学上很有意思的悖论问题,现在困扰着管理学家。这提出的根本问题是:企业还要不要持续的改善管理?科学管理还有没有用?未来市场和企业谁代替谁?刚才听了文跃然教授的演讲,文教授几十年一直从事人力资源管理教学,还创办了几年公司,用自己的经营管理实践告诉大家企业要回归科学管理,要用科学管理去解释人力资源管理的本质。这个也是悖论:如果科学管理能够解释人力资源管理的本质,要人力资源管理干什么?如果人力资源管理不能够解释这些问题,要科学管理干什么?所以,管理现在不断地面临这些矛盾和这些悖论。因此,互联网思维也好,创新者的窘境也好,它提出的根本问题是:企业还要不要持续的改善管理?科学管理还有没有用?未来市场和企业谁代替谁?这个问题涉及到企业和市场的关系,让我们回到罗纳德·科斯提出的两个基本问题:“如果通过企业可以消除某些成本,那为什么还会有市场交易?”反之亦然,“如果价值体系能够决定资源分配,为什么需要企业来承担建立和运转这种行政机构的成本呢?一个视角的改变,就改变了整个世界。你不是主张自由市场吗?你不是主张看不见的手吗?看不见的手如果可以解决问题那还要企业干什么?所以,两个问题都归结到一个本质上的问题,就是讲市场和企业要看到两种可以相互替代的组织形式。这个里面关键是交易成本。谁的交易成本更低,谁就替代另外一个。不确定性时代企业的生存之道:用互联网降低企业的外部交易成本;用互联网和科学管理降低企业的内部交易成本。按照科斯交易成本理论我们再来看看互联网,互联网向企业提出的根本问题是什么?互联网企业是降低了市场交易成本还是降低了企业内部交易成本?互联网时代企业内部交易成本还能否低于市场交易成本?还有没有可能低于市场成本?互联网时代企业存在的理由,就是你的交易成本要低于市场交易成本。因此,互联网时代企业的生存之道就是很简单了:用互联网降低企业的外部交易成本;同时,用互联网和科学管理降低企业内部交易成本。这个就是互联网企业生存之道。我们也不要去搞那么多互联网思维,所有的争论最终回归到一个问题,是谁替代谁的问题。这个就是华为的互联网思维,这个就是华为的互联网解决之道。这个也是今天华为还在向“蓝血十杰”学习的原因。说到底,就是要在互联网时代通过科学管理,通过运用互联网进一步降低企业内部运作成本,内部交易成本,这样才能够在互联网时代生存下去。

(3)、既然没有喝那杯咖啡,那么张三怎么会发出那条消息?

(4)、“所有自含集合的集合,是否包括其自身?”(whetherornotthesetofself-containingsetscontainsitself),这个问题可以就位于我们系统的范畴之外(即,我们可以不去考虑这个问题,因为不可判定)。

(5)、现代集合论的诸种公理,非常具体地规定了如何建立“其他集合的集合”(setsofothersets)。

(6)、既然这个集合本身,很显然也不是一个自然数,因为它是一个“不是自然数的‘所有东西’的巨大聚集”,那么,它必然也是它自己这个集合的成员之一(即,它是一个自含集合)。

(7)、讨论罗素悖论产生的原因时一种观点认为,集合论中没有时间、没有先后,数学可以不存在于现实空间,罗素悖论可以存在。另一种观点认为所有思维过程都在现实空间进行,“所有集合的集合”也是在现实空间产生。事件在现实空间的属性是事件的全部属性。如果“所有集合的集合”存在于现实空间,那么罗素悖论不是悖论。

(8)、来源:华夏基石e洞察(ID:chnstonewx)

(9)、如果你认为数学家是在发现客观真理,那么你就不会接受维氏的分析和解决。如果你认为数学家是在发明主观理论,那么维氏的分析和解决再清楚再简单再合理不过了。

(10)、举个例子,就像一开始根据乘法来定义除法a/b=ciffa=b*c,就会得出0/0=2=3这样的矛盾。怎么解决这里的矛盾呢?难道要取消所有的除法?当然不是了,只需要在矛盾的地方重新定义一下:0不能作除数。瞧,问题就解决了。

(11)、那么理发师是否给自己刮脸呢?如果他给的话,但按照他的话,他就不该给自己刮脸(因为他"只"帮不自己刮脸的人刮脸);如果他不给的话,但按照他的话,他就该给自己刮脸(因为是"所有"不自己刮脸的人,包含了理发师本人),于是矛盾出现了。

(12)、可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?

(13)、如果是上帝既想阻止又能阻止“恶”,那为什么我们的世界充满了“恶”呢?

(14)、康托尔作为最伟大的数学家之会永远被人类铭记。

(15)、作者介绍:杨浩,新东方智慧学堂授课老师,北大学士。全国高中数学联赛一等奖,高中物理竞赛一等奖,获得北京大学自主招生60分降分。

(16)、罗素悖论告诉我们,这个世界上没有所谓牢不可破,完全正确的理论。现今我们可能认为量子力学或是相对论是完全正确、没有纰漏的,殊不知20世纪之前人们对于经典力学、16世纪之前人们对地心说也是这么认为的。

(17)、芝诺提出,由于箭在其飞行过程中的任何瞬间都有一个暂时的位置,所以它在这个位置上和不动没有什么区别。

(18)、3)恶都是相对的恶,对于神而言,恶是不存在的。

(19)、理发师悖论和书目悖论是很容易解决的,解决的办法之一就是修正理发师/词典的规矩,将他自己排除在规矩之外;可是严格的罗素悖论就不是这么容易解决的了。

(20)、在几何学中,我们希望给定两点之间的所有点的聚集——也就是给定两点之间的线段——成为一个集合。

2、罗素悖论阻碍了集合论和整个数学

(1)、这是一个不可判定命题(undecidablepropersition):基于我们所知,无法证实或证伪任何一个选项。

(2)、正如卡·冯·伯尔说的:“科学的永恒性就在于坚持不懈地寻求之中,科学就其容量而言,是不枯竭的,就其目标而言,是永远不可企及的。”这些悖论的存在对我们本身就是一个警钟,告诉我们科学的探索之道永无止境。

(3)、忒修斯悖论最早出自普鲁塔克的记载。它是这样描述的:

(4)、我们希望“集合”是极其灵活的事物,它们能够在数学的不同部分中起到不同作用。

(5)、逻辑学基本规律中有“同一过程”、“同时”的概念,逻辑学中原本存在时间性。逻辑学基本规律是否需要增加一条规律:“在思维过程中思想必须遵守现实空间的先后顺序?”

(6)、一旦开始将集合构筑在其他集合(即,大集合套着小集合),早期集合论者,便开始考虑一个有趣的命题——一个集合能否包括其自身,作为一个成员?(即,自含集合,a self-containingset)

(7)、如果教廷回答说能的,那上帝不能搬动他创造的那块石头,所以上帝不是万能的;如果教廷回答说不能,那么上帝不能创造出一块他搬不动的石头,所以上帝也不是无所不能的。

(8)、罗素构造了一个集合S:S由一切不属于自身的集合所组成。然后罗素问:s是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定集合,问是否属于它自己是有意义的。

(9)、罗素悖论:设性质P(x)表示“x不属于A”,现假设由性质P确定了一个类A——也就是说“A={x|x∉A}”。那么问题是:A属于A是否成立?

(10)、一艘可以在海上航行几百年的船,归功于不间断的维修和替换部件。只要一块木板腐烂了,它就会被替换掉,以此类推,直到所有的功能部件都不是最开始的那些了。问题是,最终产生的这艘船是否还是原来的那艘特修斯之船,还是一艘完全不同的船?如果不是原来的船,那么在什么时候它不再是原来的船了?

(11)、这一矛盾被称为“外祖母悖论”,也叫“祖父悖论”。

(12)、如果这句话是假的,那就符合“我说的这句话是假的”,则这句话就是真的。

(13)、德国逻辑学家弗雷格(Frege)曾在自己的著作中写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成的时候却发现所干的工作的基础都崩溃了。”作为逻辑结构,数学已经处于一种悲惨的境地,数学家们以向往的心情回顾这些矛盾被认识以前的美好时代。(Kline,1972)

(14)、罗素悖论:设命题函数P(x)表示“x∉x”,现假设由性质P确定了一个类A——也就是说“A={x|x ∉ x}”。那么现在的问题是:A∈A是否成立?首先,若A∈A,则A是A的元素,那么A具有性质P,由命题函数P知A∉A;其次,若A∉A,也就是说A具有性质P,而A是由所有具有性质P的类组成的,所以A∈A。

(15)、在朴素的集合论中有这样一个假设:对于任何一个性质,满足该性质的所有元素,可以组成一个集合。

(16)、几个世纪前,罗马教廷出了一本书,书中用当时最流行的数学推论导出“上帝是万能的”。一位智者针锋相对地问:“上帝能创造出一块他搬不动的石头吗?”

(17)、但是从整体上来看,康托尔的工作解决了很多长久未解决的问题,在分析学、拓扑学中起到了重要作用,并且集合论渗透到越来越多的数学领域,成为数学基础理论不可分割的一部分。

(18)、(1)“不是自然数的所有东西的集合”(注:这个巨大的集合包括“披萨”、“加利福尼亚州”,同时,也包括其自身,因为此集合当然也不是自然数);

(19)、1874年,德国数学家康托尔创立了集合论,而且很快渗透到大部分数学分支,并成为它们的基础。但到了19世纪末,集合论中接连出现了一些自相矛盾的结果,特别是1902年罗素悖论的提出,使数学的基础动摇了,这就是所谓的第三次“数学危机”。

(20)、爱因斯坦说:“我们面对的重大问题无法在我们制造出这些问题的思考层次上解决。”

3、罗素悖论

(1)、吃饭的时候,我旁边坐着一个老总,问我“蓝血十杰”是谁?可能有一些在座的企业家不知道“蓝血十杰”是谁,“蓝血十杰”是二次大战时期美国陆军航空队的“统计管制处”的十位精英。十位精英擅长的是什么呢?就是数据分析。他们在战术上运用统计学,运用运筹学为美国的陆军航空队计算他的飞机,计算他的驾驶员,计算他的布局,计算他的炮弹等等。每一场战役,如果统计学上不能赢,这个仗是不会去打。这不像德国军队,不像共产d军队,我们不用统计学,我们是靠激动灵活的战略战术。美国人是靠统计学来打仗。二战结束后,福特公司一次性将这10个人全部招进来了,分别进入了公司的计划、财务、事业部、质量等关键业务和管理控制队伍。这10位人在福特公司掀起了一场以数据分析、市场导向,以及强调效率和管理控制为特征的管理变革,这一场变革使得福特公司摆脱了老福特经验管理的禁锢,从低迷中重整旗鼓再现当年的辉煌。这10个人被称之为美国现代管理企业的奠基者,这个就是“蓝血十杰”的由来。“蓝血十杰”对于现代企业管理的主要贡献是什么?概括起来包括四个方面:第一个是基于数据和事实的理性分析和科学管理。按照“蓝血十杰”的管理哲学,事实都是可以度量的;不能够度量的事情就不是事实,最多是一种现象。第二个是建立了在计划、预算、流程和利润中心基础上的规范的管理控制系统。据说这次从中央到地方财政部门,都在大力推行的一件事情,就是管理会计,管理会计的重要性恰恰是在预算、计划流程和责任中心基础上建立起一套管理系统。第三个是重新定义了财务部门的功能,使之在传统的会计和融资功能基础上,承担起成本分析、利润分析、投资决策等现代管理会计的职责。第四个是客户导向和力求简单的产品开发策略。“蓝血十杰”代表了科学管理和批判性思维精神我认为基于数据和事实的理性分析和决策,本质上是一种批判性思维,这事一种客观的、公正的、态度谦逊的和不带成见的思维方式。批判思维是创造性思维的出发点,没有批判就没有创造;科学管理与创新并非是对立的,二者遵循的是同样的思维规律;科学管理帮助创新发现问题,为创新奠定商业化成功的基础。至少在外国人来看,我们应该学习“蓝血十杰”对数据和事实的科学精神,学习他们从点滴做起建立现代企业管理体系大厦的职业精神,学习他们敬重市场法则在缜密的调查研究基础上进行决策的理性主义。在调查研究基础上进行决策这种理性主义,基于实践本质上是一种批判性的思维,而批判性思维它实际上是创造性思维的起点,没有批判就没有创造,所以创造实际上是发起于批判,因此,科学管理与创新并非是对立的,二者在思维上遵循同样的逻辑。

(2)、因为,如果他给自己理发,那么他就属于自己给自己理发的那类人。

(3)、同时,我们对于下述建构也要谨慎得多,比如“不是自然数的‘所有东西’的集合”(thesetofeverythingthatisnotanaturalnumber)。

(4)、目前,关于数学基础的各派思想依然层出不穷,至今没有形成一个在数学界被普遍接受的理论。

(5)、尽管有这些限制,现代集合论的诸种公理,仍然足够灵活,结合形式逻辑的规则,它们基本上为整个现代数学提供了坚实的基础。

(6)、我们经常始于某个直觉概念——关于某物是如何运作的——而后我们发现在自己的直觉中,存在某些奇怪和自相矛盾的东西,随后我们会想办法处理这种奇异性,并解决难题。

(7)、搬运翻译工:Suhrawardi(剑桥大学神学博士)

(8)、(其实集合内的元素并不一定要是数字,比如 A={吉拉,♥,木头},A也是一个集合,只不过在这篇文章里主要探讨数的集合。)

(9)、数学家GeorgCantor和其他早期集合论者,在如今被我们称为“朴素集合论”(naivesettheory)的框架内工作。

(10)、但当我们考虑A的相反项——“所有‘不’自含集合的集合”(thesetofallsetsthatdonotcontainthemselvesaselements)——悖论就出现了。

(11)、总而言之,罗素悖论的解就是将朴素集合论进一步完善成现代集合论的过程。

(12)、从现实空间分析“所有集合的集合”可得出,“所有集合的集合”必须依据“所有集合”的存在而存在,“所有集合”产生的时间在前,“所有集合的集合”产生的时间在后。在统计“所有集合”时,被统计到的集合只能是当时已经存在的集合,统计不到当时不存在的集合,“所有集合”被统计完成后才能产生“所有集合的集合”。“的集合”中的“集合”与“所有集合”中的“集合”同名不同时,“的集合”中的“集合”不是之前那个“所有集合”之内的集合。

(13)、罗素悖论(Russell’sParadox)

(14)、一艘可以在海上航行几百年的船,归功于不间断的维修和替换部件。只要一块木板腐烂了,它就会被替换掉,以此类推,直到所有的功能部件都不是最开始的那些了。问题是,最终产生的这艘船是否还是原来的那艘特修斯之船,还是一艘完全不同的船?如果不是原来的船,那么在什么时候它不再是原来的船了?

(15)、上文,我们已经将平面中的一条线段,考虑为一个集合。

(16)、C={x|x是拖拉机}是一个集合,任何一台拖拉机都是这个集合的元素。

(17)、如果理发师不给自己理发,那么,他就属于“自己不理发的人”,根据他自己定的规则,他可以帮自己理发;如果理发师给自己理发,那么,他就不属于“自己不理发的人”,根据他自己定的规则,他不该给自己理发。

(18)、因为你年轻的祖父母被你杀死了,所以就不会有你的父亲;没有了你的父亲,你就不会出生;你没出生,就没有人会把你的祖父母杀死;若是没有人把你的祖父母杀死,那么,你就会存在;既然你存在,那么就有了最开始的假设,即回到过去,在父亲出生之前杀死祖父母。

(19)、我们不会去使用“所有事物”(everything)这种大到没边儿的词,诸如此种集合,必须被构建为诸多下属集合(subsets),而它们又要属于我们已经明确定义的一个更大的集合。

(20)、2)否认恶的存在,即认为恶并没有实体性的存在,只是善的缺乏;

4、罗素悖论怎么解决的

(1)、如果我们问,一个元素的集合可以包括它自己吗?这个答案是肯定的。比如,一个集合由所有含无限多元素的集合组成,那这个集合中肯定包括它自己。

(2)、但是集合的元素必须是确定的。所以有些概念不能构成集合,例如”美女的集合”就是一种错误的说法,因为一个人美不美会因为其他人的感受而异,不具有确定性。

(3)、但是,招牌上说明他不给这类人理发,因此他不能自己理。

(4)、那么,如何解决罗素悖论呢?很简单,对于“R是否属于R”此无定义处进行重新定义,属于不属于都可以,或者说此处没有意义也可以,看哪种定义比较适用。数学家构造的理论出现矛盾了,就像人们讲话出现了矛盾了一样,解决的方法很简单:“对不起,我没有注意到这里有矛盾,我重新说明一下,此处应该是如此如此……”

(5)、如果这句话是真的,那就不符合“我说的这句话是假的”,则这句话就是假的;

(6)、理发师悖论与罗素悖论是等价的:如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是城里不属于自身的那些集合,并且城里所有不属于自身的集合都属于他。那么他是否属于他自己?这样就由理发师悖论得到了罗素悖论。反过来的变换也是成立的。

(7)、作者:AndyKiersz(seniorquantreporteratBusinessInsider,曾在芝加哥大学和普渡大学研究数学)

(8)、如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。

(9)、比如,自然数集,再比如,所有的未成年人,等等。这个假设看起来很容易使人信服,但这种不受任何限制的建构集合的方式,就出现了问题。

(10)、对于他来说,似乎人、物体、天空还都存在,自身的运动、身体感觉都可以输入。这个脑还可以被输入或截取记忆(截取掉大脑手术的记忆,然后输入他可能经历的各种环境、日常生活)。他甚至可以被输入代码,“感觉”到他自己正在这里阅读一段有趣而荒唐的文字。

(11)、既然避免了在未来发生不幸,那么张三怎么会在穿越后得知自己将发生不幸?

(12)、再复杂点,我们还希望考虑“诸多集合的聚集”(collectionsofsets)。

(13)、如果集合A不是自己的元素,那么集合A就满足“不包括自己的集合”的定义,应该是此集合的元素之矛盾。

(14)、这个悖论是罗素提出的,叫做罗素悖论,或者叫理发师悖论。

(15)、推理如下:如果他不给自己刮脸,那么,他属于“自己不刮脸”的那一类村民,按规定,他必须给自己刮脸,所以他可以做将为自己刮脸的行为直至为自己刮脸。在理发师为自己刮脸后,他已经属于“自己刮脸”的那一类村民,按规定从此他不应再给自己刮脸了。这样理发师可以从“不给自己刮脸的人”自然合理地转换成为“给自己刮脸的人”。

(16)、解决这一悖论主要有两种选择,ZF公理系统和NBG公理系统。策梅罗在自己这一原则基础上提出第一个公理化集合论体系,后来这一公理化集合系统很大程度上弥补了康托尔朴素集合论的缺陷。这一公理系统在通过弗兰克尔的改进后被称为ZF公理系统。

(17)、所有不以自己为元素的集合组成的集合是“不以自己为元素的集合”还是“以自己为元素的集合”?判断这个问题时出现悖论。

(18)、正当数学家们觉得没有人比他们更懂集合的时候,英国哲学家柏兰德·罗素提了个问题:有没有不是集合的整体?也就是说,宇宙万物中,有没有不可能被放在一起考虑的一类东西?

(19)、设集合S是由一切不属于自身的集合所组成,即“S={x|x∉x}”。那么问题是:S属于S是否成立?首先,若S属于S,则不符合x∉x,则S不属于S;其次,若S不属于S,则符合x∉x,S属于S。

(20)、由于这几个悖论迟迟得不到解决,康托尔承受着巨大的精神压力,最终精神失常,死在了哈勒大学精神病院里。时至今日,第三次数学危机依然没有完美解决。数学家们只是通过人为添加一些限制条件以回避悖论的出现。

5、罗素悖论的内容

(1)、因此,我们有理由也会有一个“不是自然数的‘所有东西’的集合”(thesetofeverythingthatisnotanaturalnumber)。

(2)、飞矢不动悖论是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论中的一个。人们通常把这些悖论称为“芝诺悖论”。

(3)、但对这个看似合理的问题的回答却会陷入两难境地。如果s属于S,根据S的定义,s就不属于S;反之,如果s不属于S,同样根据定义,s就属于S。无论如何都是矛盾的。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。这些原则必须足够狭窄,以保证排除一切矛盾;另一方面又必须充分广阔,使康托尔集合论中一切有价值的内容得以保存下来。

(4)、现实不是科幻小说,科学发展中出现的任何理论危机都意味着我们认识的不足,也激励着一代又一代的科学家们去探索、发现。因此,我们不必追求完美的理论,相反,真理的丧失、权威的崩塌才是学科发展前所未有的良机。

(5)、飞矢不动悖论是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论中的一个。人们通常把这些悖论称为“芝诺悖论”。

(6)、基于这两种不同的数学哲学基础,面对悖论问题时,可以得出很不相同的分析方式和解决方式。一百年前出现罗素悖论的时候,数学家们普通接受“发现”的数学哲学观点,当数学出现悖论的时候,就觉得天塌下来了:我的上帝,是不是客观真理出问题了,或者上帝旨意出问题了?如果是以维氏“发明”的数学哲学观点,就觉得没有什么大不了的,根本不是客观真理出问题了,而是数学家主观观念出问题了。数学家构造的规则矛盾了,在矛盾的地方再构造一个新规则就是了。

(7)、一个关于变量的有限聚集,比如x、y、z,应该是一个集合。

(8)、“那么,在这一瞬间里,这支箭是动的,还是不动的?”

(9)、比如,数学的发展就曾面临过几次极其严峻的考验。距离目前最近的一次,就是20世纪罗素悖论对康托尔集合论的冲击(也称第三次数学危机)。

(10)、那么,具体到罗素悖论,如何分析和解决呢?很简单,R是数学家发明构造的,数学家给出的规则对于“R是否属于R”给出了一个矛盾式的规则,相当于没有定义。没有定义起码有三种可能性:缺少定义,重言定义,矛盾定义。

下一篇:没有了 上一篇:131句罗曼罗兰经典语录没有伟大的精选好句